

We assume that V and W are continuous and that V has a continuous derivative at Z=O and Z=Z1.

For regions I and III,

$$E^{2}V'' + CEV' - V - W = O$$

$$CW' + V = O$$
Looking for solutions $V = Ae^{\lambda E}$ and $W = Be^{\lambda E}$, we find

$$\begin{bmatrix} E^{2}\lambda^{2} + EC\lambda - I & -I \\ I & C\lambda \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} O \\ O \end{bmatrix}$$

-) chorocteristic Equation

$$det \begin{vmatrix} \varepsilon^2 \lambda^2 + \varepsilon c \lambda - l & -l \\ l & c \lambda \end{vmatrix} = 0$$

$$\Rightarrow \varepsilon^{*}\rho(\lambda) = \varepsilon^{*}\lambda^{3} + \varepsilon(\lambda^{*} - \lambda + \frac{1}{c}) = 0$$

This polynomial has exactly
1 negative real root λ and
2 other roots λ_{2} and λ_{3} with positive real ports
(You can try different Einds of roots to
see that this is true.)
In region II, we have
 $\varepsilon^{2}v^{*} + c \varepsilon v' + (-v - w) = 0$
 $(w' + v = 0)$

The inhomogeneous solution is w=1, v=0, andthe homogeneous solution is a sum of $e^{\lambda_i z}$, i=1,2,3. Since we want the solution to approach O as $z \rightarrow \pm \infty$, the travelling pulse solution has the form

$$w(\bar{z}) = \begin{pmatrix} Ae^{\lambda_{i}\bar{z}} & f_{0} & \bar{z} \geq \bar{z}, \\ l + \sum_{i>i}^{3} B_{i}e^{\lambda_{i}\bar{z}} & f_{0} & 0 \leq \bar{z} \leq \bar{z}, \\ \\ \sum_{i>i}^{3} C_{i}e^{\lambda_{i}\bar{z}} & f_{0} & \bar{z} \leq 0 \end{pmatrix}$$

and V=-Cwa.

we also require with and Vz to be continuous at Z=0, Z, and that v(a)=v(Z,)=x.

So, we have 6 continuity conditions and 2 constraints to help us find 8 unknown coefficients A, Bi, C: and parameters C and Z,.

After much calculation, we get

$$e^{\lambda_1 \cdot \cdot \cdot} + \varepsilon^2 p'(\lambda_1) \propto -1 = 0$$
 ()
and $\frac{e^{-\lambda_2 \cdot \cdot}}{p'(\lambda_3)} + \frac{e^{-\lambda_3 \cdot \cdot}}{p'(\lambda_3)} + \frac{1}{p'(\lambda_1)} + \varepsilon^2 \propto = 0$

Let
$$s=e^{\lambda_{1}Z_{1}}$$
 and get
 $h(s):= 2-s+\frac{p'(\lambda_{1})}{p'(\lambda_{2})}e^{-\lambda_{1}\log(s)/\lambda_{1}}+\frac{p'(\lambda_{1})}{p'(\lambda_{2})}e^{-\lambda_{3}\log(s)/\lambda_{1}}$
 $=0$
(2)
(1) relates α to Z_{1}
(2) relates C to Z_{2}
So, we can numerically relate wave speed C
to α .
 $2 \cdot o \int_{0}^{\infty} \frac{g_{2}(\lambda_{2})}{g_{2}(\lambda_{2})}e^{-\lambda_{2}\log(s)/\lambda_{1}}$
For each α and E small enough. There are
 2 travelling pulses (with 2) different wave speeds c)
That means there are 2 travelling pulses.
 a fost and a slow one.

For large of there are no pulses.

A generalised Keller-Segel model of chemotoxis
cell
$$U_{k} = \nabla \cdot \left(p(u,v) \nabla u - \psi(u,v) \nabla v \right)$$

diffusion part chemotoxis part
chemotoxis part
chemotoxis part
chemotoxis part
 $V_{E} = D_{v} \nabla^{2} v + uu - \delta v$
Volume-filling mechanism
• cells have a nonzero size
• cell motion is limited in regions accupied by other
cells
We introduce a "squeeze probability" q(u).
 $q(u) = prob.$ of enterny a neighbouring space
given a local density u
Let ü be some finite crowding copacity, i.e.,
the max density of cells at any point.
We require the following properties:
 $q(v) = 0$

For the generalised model with squeeze
probability
$$q(u)$$
, we will derive that
 $U_t = \nabla \cdot \left[D_u (q(u) - u q'(u)) \nabla u - X u q(u) \nabla v \right].$

$$U = u(x, t),$$

$$U_{-} = u(x - \Delta x, t),$$

$$U_{+} = u(x + \Delta x, t),$$

$$W = \frac{\partial v}{\partial x}(x, t),$$

$$W_{-} = \frac{\partial v}{\partial x}(x - \Delta x, t),$$

$$W_{+} = \frac{\partial v}{\partial x}(x + \Delta x, t),$$

$$Q = Q(u),$$

$$Q_{+} = Q(u_{+}).$$
At each point x , a cell has a prob.
 $X = of \frac{frying}{f}$ to more left and a
prob. $\beta = f \frac{frying}{f}$ to more right in the
next thme step Δt .